团结拼搏 自强不息
WELCOME
当前位置: 首页>>导师介绍>>理学院>>正文
理学院

统计学、应用统计-隋世友

2024年12月06日 11:44  点击:[]

 

 

个人信息:

姓名:隋世友

职称:讲师

学院:天津商业大学理学院

联系方式:sui_shiyou@163.com

学科领域:

应用统计学 、微分方程定性理论及其应用

代表性论文

[1] Shiyou Sui, Weijiao Xu. Bounding the number of limit cycles for perturbed piecewise linear Hamiltonian system [J].J. Math. Anal. Appl., 2025, 542:128866, 14 pp.

[2] Shiyou Sui, Yongkang Zhang, Baoyi. Proof of two conjectures for perturbed piecewise linear Hamiltonian systems [J].

Nonlinear Anal. Real World Appl., 2025,81:104195, 10 pp.  

[3] Shiyou Sui, Weijiao  Xu, Yongkang Zhang. Limit cycles bifurcating from planar polynomial quasi-homogeneous centers of weight-degree 3 with nonsmooth perturbations [J]. Internat. J. Bifur. Chaos Appl. Sci. Engrg.,2024, 34: 2450141, 12 pp.

[4]隋世友,徐伟骄.具有非Morsean点的二次可逆系统r(6)的极限环分支[J].数学学报, 2021, 64 (6): 999-1004. 

[5]赵凌燕,隋世友.一道中国北方数学奥林匹克试题的引申.中等数学,2020 (6), 11-17.

[6] Shiyou Sui, Jihua Yang, Liqin Zhao. On the number of limit cycles for generic Lotka-Volterra system and Bogdanov-Takens system under perturbations of piecewise smooth polynomials [J]. Nonlinear Analysis: Real World Applications, 2019, 49: 137-158.

[7] Jihua Yang, Shiyou Sui, Liqin Zhao. On the number of zeros of Abelian integral for a class of cubic Hamilton systems with the phase portrait “butterfly”[J]. Qualitative Theory of Dynamical Systems, 2019, 18(3): 947-967.

[8] Shiyou Sui, Liqin Zhao. Bifurcation of limit cycles from the center of a family of cubic polynomial vector fields [J]. International Journal of Bifurcation and Chaos, 2018, 28(5): 1850063-1-1850063-11.

[9] Shiyou Sui, Baoyi Li. Bifurcation of limit cycles from the global center of a class of integrable non-Hamilton systems [J]. Journal of Applied Analysis and Computation, 2018, 8(5): 1441-1451.

[10] Shiyou Sui, Baoyi Li. Bounding the number of zeros of Abelian integral for a class of integrable non-Hamilton system [J]. International Journal of Bifurcation and Chaos, 2017, 27(13): 1750196-1-1750196-9. 

科研项目:

1.国家自然科学基金青年科学基金项目,平面非光滑微分系统的极限环分支,2021,在研,主持.

2.国家自然科学基金地区科学基金项目,具有多个切换流形的非光滑微分方程的极限环分支, 2021,在研,参加.

关闭